ar X iv : m at h / 03 05 30 9 v 3 [ m at h . Q A ] 2 3 Ju l 2 00 7 Representations of cross product algebras of Podleś quantum spheres

نویسنده

  • Elmar Wagner
چکیده

Hilbert space representations of the cross product ∗-algebras of the Hopf ∗-algebra Uq(su2) and its module ∗-algebras O(Sqr) of Podleś spheres are investigated and classified by describing the action of generators. The representations are analyzed within two approaches. It is shown that the Hopf ∗-algebra O(SUq(2)) of the quantum group SUq(2) decomposes into an orthogonal sum of projective Hopf modules corresponding to irreducible integrable ∗-representations of the cross product algebras and that each irreducible integrable ∗-representation appears with multiplicity one. The projections of these projective modules are computed. The decompositions of tensor products of irreducible integrable ∗-representations with spin l representations of Uq(su2) are given. The invariant state h on O(Sqr) is studied in detail. By passing to function algebras over the quantum spheres Sqr, we give chart descriptions of quantum line bundles and describe the representations from the first approach by means of the second approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 03 05 30 9 v 1 [ m at h . Q A ] 2 2 M ay 2 00 3 Representations of cross product algebras of Podles ’ quantum spheres

Hilbert space representations of the cross product ∗-algebras of the Hopf ∗-algebra Uq(su2) and its module ∗-algebras O(Sqr) of Podles’ spheres are investigated and classified by describing the action of generators. The representations are analyzed within two approaches. It is shown that the Hopf ∗-algebra O(SUq(2)) of the quantum group SUq(2) decomposes into an orthogonal sum of projective Hop...

متن کامل

A ] 2 1 Ju l 2 00 3 Representations of cross product algebras of Podleś quantum spheres

Hilbert space representations of the cross product ∗-algebras of the Hopf ∗-algebra Uq(su2) and its module ∗-algebras O(Sqr) of Podleś spheres are investigated and classified by describing the action of generators. The representations are analyzed within two approaches. It is shown that the Hopf ∗-algebra O(SUq(2)) of the quantum group SUq(2) decomposes into an orthogonal sum of projective Hopf...

متن کامل

ar X iv : m at h / 04 05 17 6 v 3 [ m at h . R T ] 1 7 N ov 2 00 4 QUANTIZED SYMPLECTIC OSCILLATOR ALGEBRAS OF RANK ONE

A quantized symplectic oscillator algebra of rank 1 is a PBW deformation of the smash product of the quantum plane with Uq(sl2). We study its representation theory, and in particular, its category O.

متن کامل

ar X iv : m at h / 04 10 15 0 v 6 [ m at h . Q A ] 1 9 Ju l 2 00 5 CLASSIFICATION OF PM QUIVER HOPF ALGEBRAS

We give the classification of (co-)path Hopf algebras and semi-path Hopf algebras with pointed module structures. This leads to the classification of multiple crown algebras and multiple Taft algebras as well as pointed Yetter-Drinfeld kG-modules and their corresponding Nichols algebras. Moreover, we characterize quantum enveloping algebras in terms of semi-path Hopf algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008